
Chapter 2

[33]

In this chapter, in order to simplify the understanding of application architecture, we
will be considering tiers from the application's stand point and therefore ignoring the
database (data tier) and client browser (presentation tier). So a single ASP.NET web
application, in monolithic terms, is 1-tier. We will see how to break this 1-tier 1-layer
web application further into layers and tiers, understanding and analyzing the needs
and effects of each step.

Usually, it takes a lot of experience working with different types of architectures
to become familiar with the advantages and disadvantages of each approach. A
developer who has worked only in 3-tier (or higher) applications may find it very
difficult to conceptualize and adapt to a 2-tier approach even though it may be more
suitable for his project. He will feel more comfortable in the n-tier based architecture
even when it is not required. That is why it is very important to study the 1-tier and
2-tier designs and analyze their pros and cons, to appreciate the usefulness and the
real need of breaking it further into multiple tiers and layers.

In this chapter, we will focus on how to break the monolithic default ASP.NET
architecture into multiple layers and tiers and see when and where to use this style.
We will also see how we can logically break the 2-tier style into different layers for
more flexibility and better code management.

Classic ASP Style: Inline Coding
Firstly, we will study the classic inline style of coding, which was the only option
available during the good old ASP 3.0 days. This was a mix of interpreted ASP
scripts and HTML code. In terms of architecture, there was not much flexibility,
although developers used classes to bring some object oriented flavor to the projects,
but these were not pure OO classes. Core features such as inheritance were not
supported. Moreover, there was lot of effort involved in coding these classes, so
most developers preferred to mix coding that was much faster in terms of
development time. At a high level, an ASP project configuration would usually
follow the given diagram:

Project Directory
-- myForm.asp

ASP Scripts

HTML code

Web Server
ASP ISAPI

Web Browser

HTML rendered

1-Tier 1-Layer Architecture in ASP.NET

[34]

In this diagram, we have ASP script files in the web server directory being processed
by ASP ISAPI (Internet Server Application Programming Interface) DLL in IIS and
rendered in the client browser. ISAPI DLL is a part of IIS itself, and not a separate
process such as the ASP.NET runtime engine.

Here is some classic ASP sample code:

<%@ language="JScript" %>
<% var pubName ="Publisher",
 pageTitle="Publisher Page Title"
 Response.Write(pubName) %>
<html>
<head><title><% =pageTitle %></title>
</head>
<body>
<div> <% =pubName %> </div>
</body>
</html>

The above ASP code is a simple example which clearly highlights the fact that the
pre-ASP net coding style was a messy mixture of HTML and ASP scripts. In this
particular style, we had no logical or physical separation of the web application code.
It followed a single-layer style—everything was done in the UI layer (which is a part
of the application tier, and is different from the presentation tier). With none of the
indispensable modern day programming features such as debugging support and
IntelliSense, maintenance of such code was nearly a nightmare.

Programming languages are either compiled or interpreted. ASP code
was interpreted line by line, unlike modern higher-level compiled
languages such as C++ and C#. Because interpreted code needs to be
converted line by line into machine code at runtime, it is usually slower
than compiled code, where the entire program is converted into machine
instructions in one batch, typically long before any of it is run.

Then came ASP.NET, doing away with the interpreted ASP scripts and introducing a
much faster compilation model along with strongly-typed languages such as C# and
VB.NET, in addition to numerous other benefits, making it a strong leap from ASP.

Although not recommended, ASP.NET still allows the use of the inline coding model
using <script> block constructs for C# and VB.NET code. We don't need to go deeper
into inline coding, but here is a simple example of how an ASP 3.0 developer might
have intuitively coded a simple project in ASP.NET without using any code-behind.

